m元n次方程或多项式的解或零点问题发展出代数几何理论。平行地,常微分方程解由李群解决,对应地,偏微分方程的解应该发展出代
发表于 : 2023年 8月 17日 23:07
一元n次方程有无根式解的问题由群论判定,而m元n次方程或多项式的解或零点问题发展出代数几何理论。平行地,常微分方程解由李群解决,对应地,偏微分方程的解应该发展出代数微分几何理论?是啥?
新买买提,海外华人中文论坛
https://test1.newmitbbs.com/
A central problem in algebra at the end of the 18th century was that of solving algebraic equations. While 2nd, 3rd and 4th degree equations could be solved explicitly by radicals it was suspected, particularly through the work of Lagrange (1771), that the general 5th degree equation could not be solved in this way. Ruffini, in 1813 , proposed a proof of this; however the proof was generally found to be unsatisfactory. Abel gave another proof in 1824 which after subsequent repairs has been considered complete. But to Galois belongs the far-reaching idea (around 1830) of attaching to the equation a certain finite permutation group (of the roots), now called the Galois group. A remarkable theorem in Galois theory states that the solvability of this group is equivalent to the solvability of the equation by radicals. The equation x5-x-1/3=0 has Galois group S5, the symmetric group of five letters which is not solvable; thus the Ruffini-Abel result follows.
When Sylow gave a lecture on these matters at the University of Oslo 1863, a farmer's son, by the name of Sophus Lie (1842-1899), was in the audience. Although his interests were oriented more towards Geometry than Algebra, Galois' ideas made a great impression on him. After his friendly and productive collaboration with Klein 1970-71, Lie conceived the idea of developing an analog for differential equations to Galois theory for algebraic equations. I shall try to explain the foundations of this theory.
多谢资料。
谢谢回复和资料。我原贴中的问题是,微分方程对应于代数方程的代数几何的对等学科是什么?你提供的那文章我没仔细看,看到有数论里的自守函数,物理中的规范场论等等。微分方程可对应于代数几何的学科是什么?研究代数方程的解集的是代数几何,那么研究微分方程的解集的是啥呢?
只能当老师吧
不愿意做老师,也可以做其他的啊,比如密码学,比如数值计算的各种应用领域,或者想赚钱去金融领域。
你这个类比需要更强的根据。一元的就是群论,多元的就是代数 - 这好像不是这么简单的类比。forecasting 写了: 2023年 8月 28日 10:20 说远了,就没人知道或者思考过这个方向吗?
如果微分方程的解集上能定义Zariski拓扑,那么研究微分方程的解集的也是代数几何,不过不应该是全部的微分方程。微分方程除加和微分而外,还有乘这一运算,所以不大可能得出同一数学结构
老兄,我啥时候这么说了?我的原话是:研究代数方程的解集的是代数几何,那么研究微分方程的解集的是啥呢?
嗯。我好像把你的意思给简单化了。forecasting 写了: 2023年 8月 28日 15:06 老兄,我啥时候这么说了?我的原话是:研究代数方程的解集的是代数几何,那么研究微分方程的解集的是啥呢?
前面那些话当然是启发式的。类比有根据就不是类比了,是证明两个数学结构同构或者同态。