连续合数定理
发表于 : 2023年 9月 11日 17:01
证明或者证伪:对于任意一个正整数k,可以找到至少k个连续正整数,全部都是合数
嗯。据说最近陶哲轩证明了一个什么和质数合数有关的东西。
哦对呀。
艹,你这就是不讲武德
A more interesting question is to ask: How small can n be such that (n, n+k) contains no prime. By Prime Number Theorem, n with size about (1+o(1))e^k is relatively trivial. In 1930's, it was proved that n=o(e^k). There have been a lot of work on this, with the most recent (also significant) progress being the work by Ford, Green, Konyagin, Tao, and Maynard. It is conjectured that the minimum n should be about (1+o(1))e^{\sqrt{k}}.
不错。san721 写了: 2023年 9月 13日 09:53 A more interesting question is to ask: How small can n be such that (n, n+k) contains no prime. By Prime Number Theorem, n with size about (1+o(1))e^k is relatively trivial. In 1930's, it was proved that n=o(e^k). There have been a lot of work on this, with the most recent (also significant) progress being the work by Ford, Green, Konyagin, Tao, and Maynard. It is conjectured that the minimum n should be about (1+o(1))e^{\sqrt{k}}.
Hahaha, lmao.TheMatrix 写了: 2023年 9月 13日 10:03 不错。
感觉一个问题,能以各种方式扩展。
比如一辆火车,走第一站用了20分钟,下一站25分钟,再下一战......,最后问:走了几站。![]()
最后的问题,类似于问“第n站最快用多长时间”TheMatrix 写了: 2023年 9月 13日 10:03 不错。
感觉一个问题,能以各种方式扩展。
比如一辆火车,走第一站用了20分钟,下一站25分钟,再下一战......,最后问:走了几站。![]()