分页: 1 / 1

#1 组合数学

发表于 : 2025年 10月 20日 14:28
TheMatrix

图片


#2 Re: 组合数学

发表于 : 2025年 10月 20日 16:30
弃婴千枝

Combinatorics很可能是第二个lie algebra,在物理学中扮演重要角色,具体我就不细说了


#3 Re: 组合数学

发表于 : 2025年 10月 20日 17:01
TheMatrix
弃婴千枝 写了: 2025年 10月 20日 16:30

Combinatorics很可能是第二个lie algebra,在物理学中扮演重要角色,具体我就不细说了

组合数学的领域太大了。Lie algebra倒是很具体。下一个Lie algebra是什么?


#4 Re: 组合数学

发表于 : 2025年 10月 20日 17:06
弃婴千枝
TheMatrix 写了: 2025年 10月 20日 17:01

组合数学的领域太大了。Lie algebra倒是很具体。下一个Lie algebra是什么?

Combinatorial Physics,Combinatorics, quantum field theory, and quantum gravity models
Adrian Tanasa
oxford

https://libgen.la/ads.php?md5=5067dd2c1 ... 01a3993070


#5 Re: 组合数学

发表于 : 2025年 10月 20日 17:22
TheMatrix
弃婴千枝 写了: 2025年 10月 20日 17:06

Combinatorial Physics,Combinatorics, quantum field theory, and quantum gravity models
Adrian Tanasa
oxford

https://libgen.la/ads.php?md5=5067dd2c1 ... 01a3993070

Abstract

After briefly presenting (for the physicist) some notions frequently used in combinatorics (such as graphs or combinatorial maps) and after briefly presenting (for the combinatorialist) the main concepts of quantum field theory (QFT), the book shows how algebraic combinatorics can be used to deal with perturbative renormalisation (both in commutative and non-commutative quantum field theory), how analytic combinatorics can be used for QFT issues (again, for both commutative and non-commutative QFT), how Grassmann integrals (frequently used in QFT) can be used to proCve new combinatorial identities (generalizing the Lindström–Gessel–Viennot formula), how combinatorial QFT can bring a new insight on the celebrated Jacobian conjecture (which concerns global invertibility of polynomial systems) and so on. In the second part of the book, matrix models, and tensor models are presented to the reader as QFT models. Several tensor model results (such as the implementation of the large N limit and of the double-scaling limit for various such tensor models, N being here the size of the tensor) are then exposed. These results are natural generalizations of results extensively used by theoretical physicists in the study of matrix models and they are obtained through intensive use of combinatorial techniques (this time mainly enumerative techniques). The last part of the book is dedicated to the recently discovered relation between tensor models and the holographic Sachdev–Ye–Kitaev model, model which has been extensively studied in the last years by condensed matter and by high-energy physicists.


#6 Re: 组合数学

发表于 : 2025年 10月 26日 22:52
TheMatrix

图片

图片