理发师悖论 (The Barber’s Paradox)

STEM版,合并数学,物理,化学,科学,工程,机械。不包括生物、医学相关,和计算机相关内容。

版主: verdeliteTheMatrix

回复
pplar楼主
论坛点评
论坛点评
帖子互动: 382
帖子: 2382
注册时间: 2023年 6月 18日 12:43

#1 理发师悖论 (The Barber’s Paradox)

帖子 pplar楼主 »

https://plus.maths.org/content/mathemat ... 0the%20set.

"Do you shave yourself? If not, come in and I'll shave you! I shave anyone who does not shave himself, and noone else."
This seems fair enough, and fairly simple, until, a little later, the following question occurs to you - does the barber shave himself? If he does, then he mustn't, because he doesn't shave men who shave themselves, but then he doesn't, so he must, because he shaves every man who doesn't shave himself... and so on. Both possibilities lead to a contradiction.

This is the Barber's Paradox, discovered by mathematician, philosopher and conscientious objector Bertrand Russell, at the begining of the twentieth century. As stated, it seems simple, and you might think a little thought should show you the way around it. At worst, you can just say "Well, the barber's condition doesn't work! He's just going to have to decide who to shave in some different way." But in fact, restated in terms of so-called "naïve" set theory, the Barber's paradox exposed a huge problem, and changed the entire direction of twentieth century mathematics.
forecasting
著名点评
著名点评
帖子互动: 363
帖子: 4416
注册时间: 2023年 4月 17日 08:26

#2 Re: 理发师悖论 (The Barber’s Paradox)

帖子 forecasting »

pplar 写了: 2024年 8月 27日 09:31 https://plus.maths.org/content/mathemat ... 0the%20set.

"Do you shave yourself? If not, come in and I'll shave you! I shave anyone who does not shave himself, and noone else."
This seems fair enough, and fairly simple, until, a little later, the following question occurs to you - does the barber shave himself? If he does, then he mustn't, because he doesn't shave men who shave themselves, but then he doesn't, so he must, because he shaves every man who doesn't shave himself... and so on. Both possibilities lead to a contradiction.

This is the Barber's Paradox, discovered by mathematician, philosopher and conscientious objector Bertrand Russell, at the begining of the twentieth century. As stated, it seems simple, and you might think a little thought should show you the way around it. At worst, you can just say "Well, the barber's condition doesn't work! He's just going to have to decide who to shave in some different way." But in fact, restated in terms of so-called "naïve" set theory, the Barber's paradox exposed a huge problem, and changed the entire direction of twentieth century mathematics.
没正经学过公理集合论,说这个悖论改变了二十世纪数学的方向,夸大其词了吧。记得公理集合论区别类class和集合set绕过了这个问题。集合论的中心问题还是连续统假设吧,啥时候罗素悖论成了中心?
上次由 forecasting 在 2024年 8月 27日 10:34 修改。
pplar楼主
论坛点评
论坛点评
帖子互动: 382
帖子: 2382
注册时间: 2023年 6月 18日 12:43

#3 Re: 理发师悖论 (The Barber’s Paradox)

帖子 pplar楼主 »

集合论是抽象数学的基础。

理发师悖论的确给naive集合论开了一个天窗,即,集合的集合的存在性问题。公理集合论由此诞生。
forecasting
著名点评
著名点评
帖子互动: 363
帖子: 4416
注册时间: 2023年 4月 17日 08:26

#4 Re: 理发师悖论 (The Barber’s Paradox)

帖子 forecasting »

pplar 写了: 2024年 8月 27日 09:52 集合论是抽象数学的基础。

理发师悖论的确给naive集合论开了一个天窗,即,集合的集合的存在性问题。公理集合论由此诞生。
你学过公理集合论吗?我没正经学过,咋感觉你这些话怪怪的?
pplar楼主
论坛点评
论坛点评
帖子互动: 382
帖子: 2382
注册时间: 2023年 6月 18日 12:43

#5 Re: 理发师悖论 (The Barber’s Paradox)

帖子 pplar楼主 »

forecasting 写了: 2024年 8月 27日 10:30 你学过公理集合论吗?我没正经学过,咋感觉你这些话怪怪的?
我知道一点点ZFC。事实上,只有极少数研究集合论公理体系的数学工作者,才会去真正学习这些乏味无趣的东西 :D
forecasting
著名点评
著名点评
帖子互动: 363
帖子: 4416
注册时间: 2023年 4月 17日 08:26

#6 Re: 理发师悖论 (The Barber’s Paradox)

帖子 forecasting »

pplar 写了: 2024年 8月 27日 10:57 我知道一点点ZFC。事实上,只有极少数研究集合论公理体系的数学工作者,才会去真正学习这些乏味无趣的东西 :D
没入门罢了,倒不觉得乏味无趣,就是觉得用到的可能性太小,只有理论趣味,所以不肯学。比如力迫法,比如大基数。
这是数理逻辑四个方向(证明论,模型论,递归论,集合论)之一。数理逻辑专业大概要具备基本的知识。
pplar楼主
论坛点评
论坛点评
帖子互动: 382
帖子: 2382
注册时间: 2023年 6月 18日 12:43

#7 Re: 理发师悖论 (The Barber’s Paradox)

帖子 pplar楼主 »

forecasting 写了: 2024年 8月 27日 11:20 没入门罢了,倒不觉得乏味无趣,就是觉得用到的可能性太小,只有理论趣味,所以不肯学。比如力迫法,比如大基数。
这是数理逻辑四个方向(证明论,模型论,递归论,集合论)之一。数理逻辑专业大概要具备基本的知识。
你说对了,数理逻辑。

我是改行学习理论计算机科学时去学了些皮毛。
回复

回到 “STEM”