上H200啊。既想要精度又想要规模,那就只能多烧钱,世上哪有那么多便宜的事。
完了,deepseek把GPU上的fp8的汇编代码开源了。
版主: Softfist
#152 Re: 完了,deepseek把GPU上的fp8的汇编代码开源了。
简单总结就是:我不信,等有人验证过我才信。让我自己去验证?我又不懂
看来是脸被打的还不够肿
看来是脸被打的还不够肿
drifter 写了: 2025年 2月 26日 00:58 Xai的解读
DeepSeek's FP8 GEMM (General Matrix Multiplication) implementation, as showcased in their DeepGEMM library, has sparked some buzz for its reported performance, particularly when compared to NVIDIA's native APIs like cuBLAS. Based on what’s out there, here’s my take.
DeepGEMM is designed to squeeze every ounce of efficiency out of NVIDIA’s Hopper GPUs (like the H800), hitting over 1350 TFLOPS in FP8 precision under ideal conditions. That’s impressive when you consider NVIDIA’s cuBLAS, a go-to for matrix operations, is estimated to deliver around 1500 TFLOPS on an H800 for certain matrix sizes—though this scales up to 3000 TFLOPS on an H100, which DeepSeek likely didn’t use due to export restrictions. Posts on X and details from DeepSeek’s own releases suggest their library can outperform “expert-tuned kernels” (which could imply cuBLAS or similar) across a range of matrix sizes, sometimes by a significant margin—think up to 2.7x faster in extreme cases, as one X user noted.
What’s the trick? DeepGEMM uses a lightweight, just-in-time (JIT) compilation approach, keeping the core logic lean at around 300 lines of code. It leans hard into fine-grained scaling and custom optimizations, like two-level accumulation (using Tensor Cores for FP8 math and CUDA cores for higher-precision summing), to dodge the precision pitfalls of FP8. NVIDIA’s native APIs, while robust and general-purpose, don’t seem to match this level of specialization. DeepSeek’s focus on Mixture-of-Experts (MoE) layouts and their ability to tweak low-level instructions (even dabbling in PTX assembly) likely gives them an edge in tailored workloads—think AI training and inference for models like V3 and R1.
That said, it’s not a slam dunk. NVIDIA’s APIs are built for broad compatibility and reliability across diverse use cases, not just AI-specific GEMMs. DeepGEMM’s gains might shine brightest in DeepSeek’s own sandbox—optimized for their models and hardware constraints (like the H800’s nerfed bandwidth). Without head-to-head benchmarks on identical setups, claims of it being “much faster” feel anecdotal. The 1350+ TFLOPS figure is stellar, but cuBLAS could still edge out in raw peak performance on bigger matrices or less-specialized tasks. Plus, DeepSeek’s reliance on Hopper-specific Tensor Cores means it’s not a universal drop-in replacement.
So, is it “much faster”? Probably yes for DeepSeek’s niche—AI-driven, FP8-heavy, MoE-focused workloads on constrained hardware. For the average user leaning on NVIDIA’s stack? Maybe not as dramatic. It’s a testament to clever engineering over brute force, but the jury’s still out until someone runs the numbers side-by-side. What do you think—seen any solid comparisons?
#157 Re: 完了,deepseek把GPU上的fp8的汇编代码开源了。
GPU的ISA不公開,隔幾代ISA就大變樣,而且每代都有變化,firmware永遠不公開,脫離driver你什麼都做不了,即使driver開源了,裡面還有大量的binary blob,你不知道是什麼,總之,GPU根本就無法直接操作,需要UMD、KMD、firmware間接操作。你怎麼適配?
#158 Re: 完了,deepseek把GPU上的fp8的汇编代码开源了。
你说的是第三家去适配nvmagagop 写了: 2025年 2月 27日 02:09 GPU的ISA不公開,隔幾代ISA就大變樣,而且每代都有變化,firmware永遠不公開,脫離driver你什麼都做不了,即使driver開源了,裡面還有大量的binary blob,你不知道是什麼,總之,GPU根本就無法直接操作,需要UMD、KMD、firmware間接操作。你怎麼適配?
我说的是华为升腾GPU的team自己去适配DS
你帝,我帝,他帝,谁的帝?
#159 Re: 完了,deepseek把GPU上的fp8的汇编代码开源了。
華為芯片就不應該叫GPU,只能叫加速器,昇腾有Graphics能力嗎?
華為加速器如果只支持DeepSeek,除了中國人,不會有其他客戶的,關起門來自己玩當然怎麼做都可以,下場就是龍芯。
我還真的無聊看了看華為昇腾,跟主流架構相去甚遠,性能捉急,硬件相當於2021年代的N-2代產品,軟件需要深度綁定華為,也有一堆runtime、UMD、KMD、firmware,只不過都是華為的,歐美公司和社區肯定不會跳坑的,入教後就相當於鴻蒙,跟主流絕緣了。
「MindX SDK通过对AscendCL编程接口的封装,提供更少更易用的编程接口,简化了使用昇腾AI处理器的进行推理业务开发的过程。CANN(Compute Architecture for Neural Networks)是华为公司针对AI场景推出的异构计算架构,通过提供AscendCL编程接口(支持Python和C++语言),支持用户快速构建基于昇腾AI处理器的AI应用和业务。」

上次由 magagop 在 2025年 2月 27日 03:28 修改。
#160 Re: 完了,deepseek把GPU上的fp8的汇编代码开源了。
什么叫graphic 能力?有memory就能处理graphicmagagop 写了: 2025年 2月 27日 02:53 華為芯片就不應該叫GPU,只能叫加速器,昇腾有Graphics能力嗎?
華為加速器如果只支持DeepSeek,除了中國人,不會有其他客戶的,關起門來自己玩當然怎麼做都可以,下場就是龍芯。