Galois cohomology
版主: verdelite, TheMatrix
-
TheMatrix楼主
- 论坛支柱

2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 283
- 帖子: 13772
- 注册时间: 2022年 7月 26日 00:35
#2 Re: Galois cohomology
Galois cohomology就是Galois群上的cohomology。起因之一是class field tower problem:
Is there a number field with an infinite class field tower?
具体是啥?还没搞懂
#3 Re: Galois cohomology
Number Theory is the study of G = Gal(Q ̄ /Q), the group of automorphisms of the algebraic closure Q ̄, and the sets G naturally acts on. The following question, for example, is an open problem: is every finite group a quotient of G?
Galois cohomology involves studying the group G by applying homological algebra. This provides a natural way to classify objects, e.g. twists of a curve, and linearizes problems by defining new invariants, revealing previously hidden structure.
#4 Re: Galois cohomology
首先要理解Galois module的概念:
Galois module is a G-module, with G being the Galois group。
G-module就是group ring Z[G]上的模。比如Then the ring OL of algebraic integers of L can be considered as an OK[G]-module, and one can ask what its structure is.
然后研究G作用在Galois module上。这是Galois representation的基本问题。
-
TheMatrix楼主
- 论坛支柱

2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 283
- 帖子: 13772
- 注册时间: 2022年 7月 26日 00:35
#5 Re: Galois cohomology
FoxMe 写了: 2025年 10月 24日 11:00Galois cohomology就是Galois群上的cohomology。起因之一是class field tower problem:
Is there a number field with an infinite class field tower?
具体是啥?还没搞懂
我知道cohomology研究的是xx的obstruction,但是还没有建立具体的图像。
-
TheMatrix楼主
- 论坛支柱

2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 283
- 帖子: 13772
- 注册时间: 2022年 7月 26日 00:35
#6 Re: Galois cohomology
FoxMe 写了: 昨天 10:13首先要理解Galois module的概念:
Galois module is a G-module, with G being the Galois group。
G-module就是group ring Z[G]上的模。比如Then the ring OL of algebraic integers of L can be considered as an OK[G]-module, and one can ask what its structure is.
然后研究G作用在Galois module上。这是Galois representation的基本问题。
对。群表示,群作用,group algebra 模,这三个差不多是同一个意思。哦。在加上G-module,这四个差不多是同一个意思。
原因: 未提供修改原因
#7 Re: Galois cohomology
来看几个简单的例子。令G=Gal(L/K), A=L*.
H0(G, A) = AG = {a ∈ A : s.a = a for all s ∈ G} = K*. 这个trivial情况没啥意思,只是定义。有意思的是:
H1(G, A) = 0. 搞懂这个结果都不容易,首先要知道
We define H1(G, A) as 1-cocycles modulo an equivalence relation. Here, a 1-cocycle is a set-theoretic map G → A, s → as such that ast = as.s(at), and we say as ∼ bs if there exists an a ∈ A with bs = a−1.as.s(a) for all s ∈ G.
https://wstein.org/edu/2010/582e/lectur ... mology.pdf
首先要理解啥是cocycle, coboundary... 先得理解chain complex/cohomology:
https://en.wikipedia.org/wiki/Chain_complex#Definitions
Elements of ker(dn) are called n-cocycles, while elements of im(dn−1) are called n-coboundaries.
#8 Re: Galois cohomology
Brauer group of a field K
Br(K) = H2 (K, (Ksep)*) 理解为
Br(K) = H2 ( Gal(Ksep / K), (Ksep)*)
这是infinite extension,留待以后再看
-
TheMatrix楼主
- 论坛支柱

2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 283
- 帖子: 13772
- 注册时间: 2022年 7月 26日 00:35
#9 Re: Galois cohomology
FoxMe 写了: 今天 11:01来看几个简单的例子。令G=Gal(L/K), A=L*.
H0(G, A) = AG = {a ∈ A : s.a = a for all s ∈ G} = K*. 这个trivial情况没啥意思,只是定义。有意思的是:
H1(G, A) = 0. 搞懂这个结果都不容易,首先要知道
We define H1(G, A) as 1-cocycles modulo an equivalence relation. Here, a 1-cocycle is a set-theoretic map G → A, s → as such that ast = as.s(at), and we say as ∼ bs if there exists an a ∈ A with bs = a−1.as.s(a) for all s ∈ G.
https://wstein.org/edu/2010/582e/lectur ... mology.pdf
首先要理解啥是cocycle, coboundary... 先得理解chain complex/cohomology:
https://en.wikipedia.org/wiki/Chain_complex#Definitions
Elements of ker(dn) are called n-cocycles, while elements of im(dn−1) are called n-coboundaries.
一般的group cohomology是很抽象的。和Galois group联系在一起的稍微具体一点。但也是很难的。有点抡不动的感觉。

