来讨论下这个air gen发电机制吧 无限清洁能源
版主: verdelite, TheMatrix
来讨论下这个air gen发电机制吧 无限清洁能源
https://www.popsci.com/technology/air-g ... city-film/
https://onlinelibrary.wiley.com/doi/10. ... .202300748
作者是Jun Yao,
复旦EE本科出身,现在是U Mass的assistant professor。
https://www.umass.edu/cphm/people/jun-yao
这个要是实现了,不得了啊。
没准儿也来这里的?
就是发现了有100nm 孔洞的材料,在空气中和水分子作用,会实现云层中闪电机制,水分子在100 nm 通道外端和材料表面接触更频繁,让材料表面带电,内部水分子和材料表面接触几率低,净结果在材料两面造成电位差,可以持续放电。
理论上,只要有湿度的空气都可以发电。纳米薄膜可以无限叠加,实现有实际用途的千瓦级放电。
来讨论下
https://onlinelibrary.wiley.com/doi/10. ... .202300748
作者是Jun Yao,
复旦EE本科出身,现在是U Mass的assistant professor。
https://www.umass.edu/cphm/people/jun-yao
这个要是实现了,不得了啊。
没准儿也来这里的?
就是发现了有100nm 孔洞的材料,在空气中和水分子作用,会实现云层中闪电机制,水分子在100 nm 通道外端和材料表面接触更频繁,让材料表面带电,内部水分子和材料表面接触几率低,净结果在材料两面造成电位差,可以持续放电。
理论上,只要有湿度的空气都可以发电。纳米薄膜可以无限叠加,实现有实际用途的千瓦级放电。
来讨论下
x1

Re: 来讨论下这个air gen发电机制吧 无限清洁能源
需要一个电风扇造成空气流动?StMichael 写了: 2023年 7月 15日 15:46 https://www.popsci.com/technology/air-g ... city-film/
https://onlinelibrary.wiley.com/doi/10. ... .202300748
作者是Jun Yao,
复旦EE本科出身,现在是U Mass的assistant professor。
https://www.umass.edu/cphm/people/jun-yao
这个要是实现了,不得了啊。
没准儿也来这里的?
就是发现了有100nm 孔洞的材料,在空气中和水分子作用,会实现云层中闪电机制,水分子在100 nm 通道外端和材料表面接触更频繁,让材料表面带电,内部水分子和材料表面接触几率低,净结果在材料两面造成电位差,可以持续放电。
理论上,只要有湿度的空气都可以发电。纳米薄膜可以无限叠加,实现有实际用途的千瓦级放电。
来讨论下
Re: 来讨论下这个air gen发电机制吧 无限清洁能源
不需要,只要空气中有湿度就是有水分子就可以。
本质上还是harvest太阳的能源。也许还有部分来自地球自身的能量。
但是体积要比太阳能板小很多倍,也可以在绝大多数环境下产电。
x1

Re: 来讨论下这个air gen发电机制吧 无限清洁能源
不降低,水不被消耗,回到空气里
就好比利用纳米孔洞材料制造了一朵微型的云在不停闪电
关键是100 nm这个水分子的 mean free path
具体读那片论文吧,最近媒体跟进很多
Re: 来讨论下这个air gen发电机制吧 无限清洁能源
Generic Air-Gen Effect in Nanoporous Materials for Sustainable Energy Harvesting from Air Humidity
Xiaomeng Liu, Hongyan Gao, Lu Sun, Jun Yao
First published: 05 May 2023
https://doi.org/10.1002/adma.202300748
Read the full text
PDFPDF
Tools
Share
Abstract
Air humidity is a vast, sustainable reservoir of energy that, unlike solar and wind, is continuously available. However, previously described technologies for harvesting energy from air humidity are either not continuous or require unique material synthesis or processing, which has stymied scalability and broad deployment. Here, a generic effect for continuous energy harvesting from air humidity is reported, which can be applied to a broad range of inorganic, organic, and biological materials. The common feature of these materials is that they are engineered with appropriate nanopores to allow air water to pass through and undergo dynamic adsorption–desorption exchange at the porous interface, resulting in surface charging. The top exposed interface experiences this dynamic interaction more than the bottom sealed interface in a thin-film device structure, yielding a spontaneous and sustained charging gradient for continuous electric output. Analyses of material properties and electric outputs lead to a “leaky capacitor” model that can describe how electricity is harvested and predict current behaviors consistent with experiments. Predictions from the model guide the fabrication of devices made from heterogeneous junctions of different materials to further expand the device category. The work opens a wide door for the broad exploration of sustainable electricity from air.
Xiaomeng Liu, Hongyan Gao, Lu Sun, Jun Yao
First published: 05 May 2023
https://doi.org/10.1002/adma.202300748
Read the full text
PDFPDF
Tools
Share
Abstract
Air humidity is a vast, sustainable reservoir of energy that, unlike solar and wind, is continuously available. However, previously described technologies for harvesting energy from air humidity are either not continuous or require unique material synthesis or processing, which has stymied scalability and broad deployment. Here, a generic effect for continuous energy harvesting from air humidity is reported, which can be applied to a broad range of inorganic, organic, and biological materials. The common feature of these materials is that they are engineered with appropriate nanopores to allow air water to pass through and undergo dynamic adsorption–desorption exchange at the porous interface, resulting in surface charging. The top exposed interface experiences this dynamic interaction more than the bottom sealed interface in a thin-film device structure, yielding a spontaneous and sustained charging gradient for continuous electric output. Analyses of material properties and electric outputs lead to a “leaky capacitor” model that can describe how electricity is harvested and predict current behaviors consistent with experiments. Predictions from the model guide the fabrication of devices made from heterogeneous junctions of different materials to further expand the device category. The work opens a wide door for the broad exploration of sustainable electricity from air.