你干啥的?
是不是没什么学历的 炒菜大厨啊
要是没什么学历 就不要谈这种话题
跟你说这些 掉价
版主: Softfist
The prediction of protein structures has had a long and varied development, which is extensively covered in a number of reviews14,40,41,42,43. Despite the long history of applying neural networks to structure prediction14,42,43, they have only recently come to improve structure prediction10,11,44,45. These approaches effectively leverage the rapid improvement in computer vision systems46 by treating the problem of protein structure prediction as converting an ‘image’ of evolutionary couplings22,23,24 to an ‘image’ of the protein distance matrix and then integrating the distance predictions into a heuristic system that produces the final 3D coordinate prediction. A few recent studies have been developed to predict the 3D coordinates directly47,48,49,50, but the accuracy of these approaches does not match traditional, hand-crafted structure prediction pipelines51. In parallel, the success of attention-based networks for language processing52 and, more recently, computer vision31,53 has inspired the exploration of attention-based methods for interpreting protein sequences54,55,56.
“告诉大家用AI 可以大幅度提高蛋白质结构预测精度”英亲王阿齐格 写了: 2024年 10月 13日 20:16 The prediction of protein structures has had a long and varied development, ... but the accuracy of these approaches does not match traditional, hand-crafted structure prediction pipelines
你看过paper吗?行观曰 写了: 2024年 10月 13日 20:22 “告诉大家用AI 可以大幅度提高蛋白质结构预测精度”
显然两个说法不一致。
而跟据2016年之后的A I 进展,上面的英文说法显然在贬低他人的工作
英亲王阿齐格 写了: 2024年 10月 13日 20:04 Proc Int Conf Intell Syst Mol Biol
. 1993:1:402-10.
Protein structure prediction system based on artificial neural networks
英亲王阿齐格 写了: 2024年 10月 13日 20:16 The prediction of protein structures has had a long and varied development, which is extensively covered in a number of reviews14,40,41,42,43. Despite the long history of applying neural networks to structure prediction14,42,43, they have only recently come to improve structure prediction10,11,44,45. These approaches effectively leverage the rapid improvement in computer vision systems46 by treating the problem of protein structure prediction as converting an ‘image’ of evolutionary couplings22,23,24 to an ‘image’ of the protein distance matrix and then integrating the distance predictions into a heuristic system that produces the final 3D coordinate prediction. A few recent studies have been developed to predict the 3D coordinates directly47,48,49,50, but the accuracy of these approaches does not match traditional, hand-crafted structure prediction pipelines51. In parallel, the success of attention-based networks for language processing52 and, more recently, computer vision31,53 has inspired the exploration of attention-based methods for interpreting protein sequences54,55,56.
首先 神经网络用于蛋白质预测 很久了,有几十年的历史。 这个你承认把?superdsb 写了: 2024年 10月 13日 20:34 这是jumper那片nature自己吹牛逼的话
什么几把同行的都lack atomic accuracy
怎么定义的accuracy也没说而且也没比较数据
这种要是换了referee是绝对不会让发出来的
而且AlphaFold自己就没有多高的accuracy
AlphaFold has various limitations:
AlphaFold DB provides monomeric models of proteins, rather than their biologically relevant complexes.[68]
Many protein regions are predicted with low confidence score, including the intrinsically disordered protein regions.[69]
Alphafold-2 was validated for predicting structural effects of mutations with a limited success.[70]
The model relies to some degree upon co-evolutionary information across similar proteins, and thus may not perform well on synthetic proteins or proteins with very low homology to anything in the database.[71]
The ability of the model to produce multiple native conformations of proteins is limited.
AlphaFold 3 version can predict structures of protein complexes with a very limited set of selected cofactors and co- and post-translational modifications.[72] Between 50% and 70% of the structures of the human proteome are incomplete without covalently-attached glycans.[73][68] AlphaFill, a derived database, adds cofactors to AlphaFold models where appropriate.[74]
In the algorithm, the residues are moved freely, without any restraints. Therefore, during modeling the integrity of the chain is not maintained. As a result, AlphaFold may produce topologically wrong results, like structures with an arbitrary number of knots.[75]
英亲王阿齐格 写了: 2024年 10月 13日 20:40 首先 神经网络用于蛋白质预测 很久了,有几十年的历史。 这个你承认把?
再次,这里面说了, 神经网络有很多种,用于计算机视觉的神经网络也被人拿来预测蛋白质。这个应该就是指卷积网络,卷积网络应该就是这个xu的。
再然后,又说了,基于attention的 transformer 网络 也被用来预测蛋白质。这个就跟xu的卷积网络 不是一个路数。
再然后,他的alphafold属于自己发明的一种网络叫evoformer,这个就是跟之前的不同了。
然后他这个alphfafold网络 预测了不知道多少个蛋白质,据说有几十万个?
跟老徐的这个预测了几百个,那就不是一个数量级了。
对吧,我说的0.02还是高估老徐了,实际上预测几百个蛋白质也就是相当于0.002吧,或者0.0002?
不是啊superdsb 写了: 2024年 10月 13日 20:45 AlphaFold给的credit太宽了
这种是典型的1到100 不是0到1
而且Xu的模型没有接着做下去恐怕还是因为资源算力的问题
接着做下去优化推广说不定也能有很大影响力
所以这种根本不应该给奖

deepmind估计当时是到处征集科学问题,看看能不能用deep learning解决。Jumper听了徐锦波的报告觉得这也是个好方向就去了。superdsb 写了: 2024年 10月 13日 20:34 这是jumper那片nature自己吹牛逼的话
什么几把同行的都lack atomic accuracy
怎么定义的accuracy也没说而且也没比较数据
这种要是换了referee是绝对不会让发出来的
而且AlphaFold自己就没有多高的accuracy
AlphaFold has various limitations:
AlphaFold DB provides monomeric models of proteins, rather than their biologically relevant complexes.[68]
Many protein regions are predicted with low confidence score, including the intrinsically disordered protein regions.[69]
Alphafold-2 was validated for predicting structural effects of mutations with a limited success.[70]
The model relies to some degree upon co-evolutionary information across similar proteins, and thus may not perform well on synthetic proteins or proteins with very low homology to anything in the database.[71]
The ability of the model to produce multiple native conformations of proteins is limited.
AlphaFold 3 version can predict structures of protein complexes with a very limited set of selected cofactors and co- and post-translational modifications.[72] Between 50% and 70% of the structures of the human proteome are incomplete without covalently-attached glycans.[73][68] AlphaFill, a derived database, adds cofactors to AlphaFold models where appropriate.[74]
In the algorithm, the residues are moved freely, without any restraints. Therefore, during modeling the integrity of the chain is not maintained. As a result, AlphaFold may produce topologically wrong results, like structures with an arbitrary number of knots.[75]

没啥巧妙,就是用最新的deep learning的架构,徐锦波估计只懂很初级的全联通和cnn.英亲王阿齐格 写了: 2024年 10月 13日 20:47 不是啊
alphfafold不是徐的思路啊,徐就是卷积网络属于图像识别的思路
alphfafold是比这个巧妙多了,他用attention的机制 来搜寻类似的序列 在已知蛋白质的构型,然后根据趋同进化的原理 判断 差不多的序列承担差不多的功能,构型应该是差不多的 这个思路 来预测。

预测多少不说明什么问题。关键是alphafold2一出来 准确度让蛋白质晶体学界非常震惊。这就造成了轰动效应。英亲王阿齐格 写了: 2024年 10月 13日 19:56 而且他只预测了几百个蛋白质把
跟alphafold那种预测了几乎所有的,还是不一样的,alphafold的论文你看了吗? 你但凡看过 就不会觉得 ,跟徐有什么关系。 alphafold的网络用的是 attention,所以他叫evoformer(这个显然是取了transformer,外加evolution)
在论文里预测了几百个的意思是

那是能拿到的数据量和算力资源所决定的
