其他讨论的人没有真正去看书的,参与什么呢?
重开一个范畴论学习记录贴,欢迎讨论
版主: verdelite, TheMatrix
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
#43 Re: 重开一个范畴论学习记录贴,欢迎讨论
category theory是数学的成熟内容,学数学的基本都看过。讨论的目的是交流体会,交流新的视角。不是记流水账。
流水账我澄清一下,记录定义和定理也是好的,记录目录的话,这就是流水账了。
#44 Re: 重开一个范畴论学习记录贴,欢迎讨论
我刚学,只会讨论具体的东西TheMatrix 写了: 2024年 6月 29日 16:08 category theory是数学的成熟内容,学数学的基本都看过。讨论的目的是交流体会,交流新的视角。不是记流水账。
流水账我澄清一下,记录定义和定理也是好的,记录目录的话,这就是流水账了。
Functorially yours
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
#49 Re: 重开一个范畴论学习记录贴,欢迎讨论
高手不少,比如回你贴的rgg,就是一个高手。
你把概念的定义写下来,那么多的概念,有1/10的概念有人谈意义,就获益不少。我也获益不少。
比如,你最近贴的limit,colimit。
比如
A1 --> A2 --> ...
那么在箭头链的末端,就应该有一个东西A∞,作为这个链的结尾。这就是direct limit。是不是这样?我也不确定。
#50 Re: 重开一个范畴论学习记录贴,欢迎讨论
高手能问出Yoneda lemma是否是平凡的这种问题吗?这个论坛支持tex吗?TheMatrix 写了: 2024年 6月 30日 08:18 高手不少,比如回你贴的rgg,就是一个高手。
你把概念的定义写下来,那么多的概念,有1/10的概念有人谈意义,就获益不少。我也获益不少。
比如,你最近贴的limit,colimit。
比如
A1 --> A2 --> ...
那么在箭头链的末端,就应该有一个东西A∞,作为这个链的结尾。这就是direct limit。是不是这样?我也不确定。
Functorially yours
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
#51 Re: 重开一个范畴论学习记录贴,欢迎讨论
高手也不是所有方面都高手。思想深度,思维能力,的高手,也不能在所有的方面。
如果说Yoneda lemma不平凡,那你得能用自己的话说出一二三。说不出来的,都需要加深理解,可以听听别人怎么说。我也在等听人说。
#52 Re: 重开一个范畴论学习记录贴,欢迎讨论
你对limit没概念。最简单的例子,两个集合笛卡尔积是limit,disjoint union是colimitTheMatrix 写了: 2024年 6月 30日 08:18 高手不少,比如回你贴的rgg,就是一个高手。
你把概念的定义写下来,那么多的概念,有1/10的概念有人谈意义,就获益不少。我也获益不少。
比如,你最近贴的limit,colimit。
比如
A1 --> A2 --> ...
那么在箭头链的末端,就应该有一个东西A∞,作为这个链的结尾。这就是direct limit。是不是这样?我也不确定。
Functorially yours
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
#54 Re: 重开一个范畴论学习记录贴,欢迎讨论
你说反了,direct limit也叫colimit,inverse limit 也叫limit.
我说的就是最简单的例子。一般的定义需要兼容最简单的例子。
Functorially yours
#55 Re: 重开一个范畴论学习记录贴,欢迎讨论
所有定理都是tautology,不代表它们是平凡的rgg 写了: 2024年 6月 21日 23:00 抛砖引玉,问两个问题:
1. 能否举个本科数学阶段的例子,用范畴的语言能给出结论是用集合语言得不到或者繁琐的多的。
2. 据说米田引理是学范畴论碰到的第一个非平凡结论。 米田引理在说废话/tautology么? 需要证明么? 必须用范畴的语言理解么?
Functorially yours
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
#56 Re: 重开一个范畴论学习记录贴,欢迎讨论
我举的例子,也就是functorial 写了: 2024年 6月 30日 11:09 你说反了,direct limit也叫colimit,inverse limit 也叫limit.
我说的就是最简单的例子。一般的定义需要兼容最简单的例子。
A1 --> A2 --> A3 --> ... --> A∞
使“limit”这个名字make sense。这就叫理解。
前人起名字不是乱起的。这里面包含了前人的motivation,用例,和理解,都在里面了。
而另一个方向,
Ainv --> ... --> A3 --> A2 --> A1
就是inverse limit。
是不是make sense?
这个理解当然可以泛化,没有箭头的时候能不能定义所有元素的“汇聚”和“源头”?也可以。这就是product和direct sum。好像是吧。
#57 Re: 重开一个范畴论学习记录贴,欢迎讨论
你这说的根本不沾边TheMatrix 写了: 2024年 6月 30日 14:06 我举的例子,也就是
A1 --> A2 --> A3 --> ... --> A∞
使“limit”这个名字make sense。这就叫理解。
前人起名字不是乱起的。这里面包含了前人的motivation,用例,和理解,都在里面了。
而另一个方向,
Ainv --> ... --> A3 --> A2 --> A1
就是inverse limit。
是不是make sense?
这个理解当然可以泛化,没有箭头的时候能不能定义所有元素的“汇聚”和“源头”?也可以。这就是product和direct sum。好像是吧。
Functorially yours
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35
-
- 论坛支柱
2024年度优秀版主
TheMatrix 的博客 - 帖子互动: 268
- 帖子: 13453
- 注册时间: 2022年 7月 26日 00:35